Our Services

News

Call us today on 07562 706560
Call us today on 07562706560

Twitter Feed Popout byInfofru

  • Active user wheelchairs are manufactured to be efficient to self-propel, therefore the options available on active user wheelchairs are usually aimed at either being lightweight, or enabling an efficient configuration for self-propelling.
  • Reducing the weight of the chair can be achieved either by reducing the amount of material used or by using a lighter material. For example, many active user chairs have a rigid, non-folding design.  Because a folding mechanism uses a lot of additional frame material, rigid chairs will tend to be lighter.  Another example is the use of aluminium, titanium or carbon fibre to construct the frame of the wheelchair, rather than steel.  Minimising the presence or weight of any accessories such as push handles, tool kits and back packs also reduces the weight of the chair as a whole.
  • There are many ways in which an active user wheelchair can be configured to make it efficient, or easier to self-propel. As described above, being lightweight will help with increasing the efficiency of an active user wheelchair, but there are many other considerations:
    • Seat size. Having a seat width that is too wide means that excessive shoulder movement is required when self-propelling.  A narrow seat width means the wheels are as close as possible, allowing the shoulders to move  in their strongest, most efficient position.
    • Centre of gravity. Many active user wheelchairs have forward-backward adjustment of the rear wheel position, or can be built with a specific position.  It is essential for most active user wheelchairs to have more weight distribution over the rear wheels, than the front casters.  The rear wheels are larger, have a larger tyre and therefore roll with less resistance.  By moving the position of the rear wheels forward on the frame of the wheelchair, the wheelchair becomes more efficient to roll and to self-propel.  This forward position of the rear wheels has the added benefit of improving the position of the shoulders.  They can move with greater strength and efficiency.
    • Seat height. Many active user chairs can be adjusted or configured with specific front and rear seat heights.  The rear seat height determines the height of the shoulders above the rear wheels.  If the rear seat height is too great, the user is required to straighten their elbows more to reach the rear wheels, reducing the strength and efficiency of the arm and shoulder when self-propelling.
    • Backrest height. Excessive height of the backrest restricts movement of the back and shoulders when self-propelling.  However, backrest height is important in creating a stable sitting position.  Therefore if the backrest is not high enough, self-propelling efficiency is likely to be compromised.
    • Standard brakes are positioned to be easy to operate and close to the tyre.  During forceful self-propelling, the thumb of the user can contact the brake, resulting in injury.  Many active user wheelchairs are therefore fitted with brakes that fold away from the tyre when not in use.
    • The wheels transfer energy from the user into movement of the wheelchair, therefore they are important in maintaining efficiency of the wheelchair.  A well-built, lightweight but strong wheel will transfer a greater proportion of energy than a poorly made, heavy wheel.  Being the widest part of a wheelchair, they need to be able to deal with knocks.  A strong wheel will be able to deal with those knocks, when they are attached to the wheelchair and when they're not. 
    • The major decision when it comes to tyres is between pneumatic and solid tyres.  Pneumatic (air-filled) tyres tend to be lighter than solid tyres.  They also have significantly less rolling resistance, making self-propelling much less difficult.  The downside with pneumatic tyres is there possibility of puncturing.  This likelihood can be reduced with thicker tyre tread, good maintenance, liquid infills inside the tube and avoiding certain places where puncture might be likely.  Learning to replace a tube or having someone else that can do this can be a very useful skill.
Loading

Affiliations

Affiliations

HCPC
RCOT
Institute of Ergonomics & Human Factors
NHS Wales
Posture & Mobility Group
Call us today on 02921 660346